
Principles of Antifragile Software

Martin Monperrus
University of Lille & Inria, France
martin.monperrus@univ-lille1.fr

January 27, 2017

Abstract

There are many software engineering concepts
and techniques related to software errors. But
is this enough? Have we already completely ex-
plored the software engineering noosphere with
respect to errors and reliability? In this paper,
I discuss an novel concept, called “software an-
tifragility”, that is unconventional and has the
capacity to improve the way we engineer errors
and dependability in a disruptive manner. This
paper first discusses the foundations of software
antifragilty, from classical fault tolerance to the
most recent advances on automatic software re-
pair and fault injection in production. This pa-
per then explores the relation between the an-
tifragility of the development process and the
antifragility of the resulting software product.

1 Introduction

The software engineering body of knowledge on
software errors and reliability is not short of con-
cepts, starting from the classical definitions of
faults, errors and failures [1], continuing with the
techniques for fault-freeness proofs, fault removal
and fault tolerance, etc. But is this enough?
Have we already completely explored the space
of software engineering concepts related to er-
rors? In this paper, I discuss a novel concept,
that I call “software antifragility”, which as the
capacity to radically change the way we reason
about software errors and the way we engineer

reliability.
The notion of “antifragility” comes from the

book by Nassim Nicholas Taleb simply entitled
“Antifragile” [14]. Antifragility is a property of
systems, whether natural or artificial: a system
is antifragile if it thrives and improves when fac-
ing errors. Taleb has a broad definition of “error”:
it can be volatility (e.g. for financial systems),
attacks and shocks (e.g. for immune systems),
death (e.g. for human systems), etc. Yet, Taleb’s
essay is not at all about engineering, and it re-
mains to translate the power and breadth of his
vision into a set of sound engineering principles.
This paper provides a first step in this direction
and discusses the relations between traditional
software engineering concepts and antifragility.

First, I relate software antifragility to classi-
cal fault tolerance. Second, I show the link be-
tween antifragility and the most recent advances
on automatic software repair and fault injection.
Third, I explore the relation between the an-
tifragility of the development process and the
antifragility of the resulting software product.

This paper is a revised version of an Arxiv
paper [9].

2 Software Fragility

There are many pieces of evidence of software
fragility, sometimes referred to as “software brit-
tleness”, [13]. For instance, the inaugural flight
of Ariane 5 ended up with the total destruction
of the rocket, because of an overflow in a sub-

1

component of the system. At a totally different
scale, in the Eclipse development environment, a
single external plugin of a low-level library pro-
viding optional features crashes the whole sys-
tem and makes it unusable (this is a recent exam-
ple of fragility from December 20131). Software
fragility seems independent of scale, domain and
implementation technology.

There are means to combat fragility: fault pre-
vention, fault tolerance, fault removal, and fault
forecasting [1]. Software engineers strive for de-
pendability, they do their best to prevent, de-
tect and repair errors. They prevent bugs by
following best practices, They detect bugs by ex-
tensively testing them and comparing the imple-
mentation against the specification, They repair
bugs reported by testers or users and ship the
fixes in the next release. However, despite those
efforts, most software remains fragile. There are
pragmatic explanations to this fragility: lack of
education, technical debs in legacy systems, or
the economic pressure for writing cheap code.
However, I think that the reason is more fun-
damental: we do not take the right perspective
on errors.

3 Software Antifragility

As Taleb puts it, an antifragile system “loves er-
rors”. Software engineers do not. First, errors
cost money: it is time-consuming to find and to
repair bugs. Second, they are unpredictable: one
can hardly forecast when and where they will oc-
cur, one can not precisely estimate the difficulty
of repairing them. Software errors are tradition-
ally considered as a plague to be eradicated and
this is the problem.

Possibly, instead of damning errors, one can
see them as an intrinsic characteristic of the sys-
tems we build. Complex systems have errors: in
biological systems, errors constantly occur: DNA
pairs are not properly copied, cells mutate, etc.
Software systems of reasonable size and com-

1https://bugs.eclipse.org/bugs/show_bug.cgi?
id=334466

plexity also naturally suffer from errors, as com-
plex biological and ecological systems do. Once
one acknowledges the necessary existence of soft-
ware errors in large and interconnected software
systems[13, 10], it changes the game.

3.1 Fault-tolerance and An-
tifragility

Instead of aiming at error-free software, there are
software engineering techniques to constantly de-
tect errors in production (aka self-checking soft-
ware [18]) and to tolerate them as well (aka fault
tolerance [11]). Self-checking and self-testing and
fault-tolerance is not loving errors literally, but
it is an interesting first step.

In Taleb’s view, a key point of antifragility is
that an antifragile system becomes better and
stronger under continuous attacks and errors.
The immune system, for instance, has this prop-
erty: it requires constant pressure from microbes
to stay reactive. Self-detection of bugs is not an-
tifragile, software may detect a lot of erroneous
states, but it would not make it detect more.

For fault tolerance, the frontier blurs. If the
fault tolerance mechanism is static there is no
advantage from having more faults. If the fault
tolerance mechanism is adaptive [6] and if some-
thing is learned when an error happens, the sys-
tem always improves. We hit here a first charac-
teristic of software antifragility. A software sys-
tem with dynamic, adaptive fault tolerance capa-
bilities is antifragile: exposed to faults, it contin-
uously improves.

3.2 Automatic Runtime Bug Re-
pair

Fault removal, i.e. bug repair, is one means to
attain reliability [1]. Let us now consider soft-
ware that repairs its own bugs at runtime and
call the corresponding body of techniques “au-
tomatic runtime repair” (also called “automatic
recovery” and also “self-healing” [7]).

There are two kinds of automatic software re-
pair: state repair and behavioral repair [8]. State

2

repair consists in modifying a program’s state
during its execution (the registers, the heap, the
stack, etc.). Demsky and Rinard’s paper on data
structure repair [4] is an example of such state re-
pair. Behavioral repair consists in modifying the
program behavior, with runtime patches. The
patch, whether binary or source, is synthesized
and applied at runtime, with no human in the
loop. For instance, the application communities
of Locasto and colleagues [7] share behavioral
patches for repairing faults in C code.

As said previously, a software system can be
considered as antifragile as long as it learns some-
thing from bugs that occur. Automatic runtime
bug repair at the behavioral level corresponds
to antifragility, since each fixed bug results in
a change in the code, in a better system. This
means “loving errors”: a software system with
runtime bug repair capabilities loves errors be-
cause those errors continuously trigger improve-
ments of the system itself.

3.3 Failure Injection in Production

If you really “love errors”, you always want more
of them. In software, one can create artificial
errors using techniques called fault and failure
injection. So, literally, software that “loves er-
rors” would continuously self-injects faults and
perturbations. Would it make sense?

By self-injecting failures, a software system
constantly exercises its error-recovery capabili-
ties. If the system resists those injected failures,
it will likely resist similar real-world failures. For
instance, in a distributed system, servers may
crash or be disconnected from the rest of the net-
work. In a distributed system with fault injec-
tion, a fault injector may randomly crash some
servers (an example of such an injector is the
Chaos Monkey [2]).

Ensuring the occurrence of faults has three
positive effects on the system. First, it forces en-
gineers to think of error-recovery as a first-class
engineering element: the system must at least
be able to resist the injected faults. Second, it
gives engineers and users confidence about the

system’s error recovery capabilities; if the sys-
tem can handle those injected faults, it is likely
to handle real-world natural faults of the same
nature. Third, monitoring the impact of each in-
jection gives the opportunity to learn something
on the system itself and the real environmental
conditions.

Because of these three effects, injecting faults
in production makes the system better. This
corresponds to the main characteristic of an-
tifragility: “the antifragile loves error”. It is not
purely the injected faults that improve the sys-
tem, it is the impact of injected faults on the
engineering ecosystem (the design principles, the
mindset of engineers, etc). I will come back on
the profound relation between product and pro-
cess in Section 4. A software system using fault
self-injection in production is antifragile, it de-
creases the risk of missing, or incorrect or rotting
of error-handling code by continuously exercising
it.

Injecting faults in production must come with
a careful analysis of the the dependability losses.
There must be a balance between the depend-
ability losses (due to injected system failures)
and the dependability gains (due to software im-
provements) that result from using fault injec-
tion in production. Measuring this tradeoff is
the key point of antifragile software engineering.

The idea of fault injection in production is un-
conventional but not new. In 1975, Yau and Che-
ung [18] proposed inserting fake “ghost planes”
in an air traffic control system. If all the ghost
planes land safely while interacting with the sys-
tem and human operators, one can really trust
the system. Recently, a company named Netflix
released a “simian army” [5, 2], whose different
kinds of monkeys inject faults in their services
and datacenters. For instance, the “Chaos Mon-
key” randomly crashes some production servers,
and the “Latency Monkey” arbitrarily increases
and decreases the latency in the server network.
They call this practice “chaos engineering”.

From 1975 to today, the idea of fault injection
in production has remained almost invisible. Au-
tomated fault injection in production has rather

3

been overlooked so far (This concept is not men-
tioned in the cornerstone paper by Avizienis, La-
prie and Randell. [1].). However, the nascent
chaos engineering community may signal a real
shift.

4 Software Development
Process Antifragility

On the one hand, there is the software, the prod-
uct, and on the other hand there is the process
that builds the product. In Taleb’s view, an-
tifragility is a concept that also applies to pro-
cesses. For instance, he says that the Silicon
Valley innovation process is quite antifragile, be-
cause it deeply admits errors, and both inventors
and investors both know that many startups will
eventually fail. I now discuss the antifragility as-
pect of the software development process.

4.1 Test-driven Development

In test-driven development, developers write au-
tomated tests for each feature they write. When
a bug is found, a test that reproduces the bug
is first written; then the bug is fixed. The re-
sulting strength of the test suite gives develop-
ers much confidence in the ability of their code
to resist changes. Concretely, this confidence en-
ables them to put “refactoring” as a key phase
of development. Since developers have an aid
(the test suite) to assess the correctness of their
software, they can continuously refine the design
or the implementation. They refactor fearlessly,
having little doubts that they can break anything
that will go unnoticed. Furthermore, test-driven
development allows continuous deployment, as
opposed to long release cycles. Continuous de-
ployment means that features and bug fixes are
released in production in a daily manner (and
sometimes several times a day). It is the trust
given by automated tests that allows continuous
deployment.

What is interesting with test-driven develop-
ment is the second order effect. With continu-

ous deployment, errors have smaller impacts. No
massive groups of interacting features and fixes
arrive in production at the same time. When an
error is found in production, the new version can
be released very quickly before an catastrophic
propagation.

Also, when an error is found in production,
it applies to a version that is close to the
most recent version of the software product (the
“HEAD” version). Fixing an error in HEAD is
usually much easier than fixing an error in a past
version, because the patch can seamlessly be ap-
plied to all close versions, and because the de-
velopers usually have the latest version in mind.
Both properties (ease of deployment, ease of fix-
ing) contribute to minimize the effects of errors.
We recognize here a property of antifragility as
Taleb puts it: If you want to become antifragile,
put yourself in the situation “loves errors” [...]
by making these numerous and small in harm.
(Taleb [14]).

4.2 Bus Factor

In software development, the “bus factor” mea-
sures to what extent people are essential to a
project. If a key developer is hit by a bus (or any-
thing similar in effect), could it bring the whole
project down? In dependability terms, such a
consequence means that there is a failure propa-
gation from a minor issue to a catastrophic effect.

There are management practices to cope with
this critical risk. For instance, one technique is to
regularly move people from projects to project,
so that nobody concentrates essential knowledge.
At one extreme is “If a programmer is indispens-
able, get rid of him as quickly as possible” [17].
In the short-term, moving people is sub-optimal.
From a people perspective, they temporarily lose
some productivity when they join a new project,
in order to learn a new set of techniques, con-
ventions, and communication patterns. They
will often feel frustrated and unhappy because
of this. From a project perspective, when a de-
veloper leaves, the project experiences a small
slow-down. The slow-down lasts until the rest of

4

the team grasps the knowledge and know-how of
the developer who has just left. However, from a
long-term perspective, it decreases the bus fac-
tor. In other terms, moving people transforms
rare a,d irreversible large errors (project failure)
into lots of small errors (productivity loss, slow
down). This is again antifragile.

4.3 Conway’s Law
In programming, Conway’s law states that the
“organizations which design systems [...] are
constrained to produce designs which are copies
of the communication structures of these orga-
nizations” [3]. Raymond famously put this as
“If you have four groups working on a compiler,
you’ll get a 4-pass compiler” [12]

More generally, the engineering process has an
impact on the product architecture and proper-
ties. In other terms, some properties of a sys-
tem emerge from the process employed to build
it. Since antifragility is a property, there may
be software development processes that hinder
antifragility in the resulting software and others
that foster it. The latter would be “antifragile
software engineering”.

I tend to think that the engineers that set up
antifragile processes better know the nature of
errors than others. I believe that developers en-
rolled in an antifragile process become imbued
of some values of antifragility. Tseitlin’s concept
of “antifragile organizations” is along the same
line[15]. Because of this, I hypothesize that an-
tifragile software development processes are bet-
ter at producing antifragile software systems.

5 Conclusion
This is only the beginning of antifragile soft-
ware engineering. Beyond the vision presented
here, research now has to devise sound engi-
neering principles and techniques regarding self-
checking, self-repair and fault injection in pro-
duction. Because of the amount of legacy soft-
ware, a major research avenue is to invent ways
to develop antifragile software on top of existing

brittle programming languages and execution en-
vironments. That would be a 21th century echo
to Van Neuman’s dream of building reliable sys-
tems from unreliable components [16].

References
[1] A. Avizienis, J.-C. Laprie, B. Randell,

et al. Fundamental concepts of dependabil-
ity. Technical report, University of Newcas-
tle upon Tyne, 2001.

[2] A. Basiri, N. Behnam, R. de Rooij,
L. Hochstein, L. Kosewski, J. Reynolds, and
C. Rosenthal. Chaos engineering. IEEE
Computer, 33(3):35 – 41, 2016.

[3] M. E. Conway. How do committees invent?
Datamation, 14(4):28–31, 1968.

[4] B. Demsky and M. Rinard. Automatic de-
tection and repair of errors in data struc-
tures. ACM SIGPLAN Notices, 38(11):78–
95, 2003.

[5] Y. Izrailevsky and A. Tseitlin. The Net-
flix simian army. http://techblog.
netflix.com/2011/07/netflix-simian-
army.html, 2011.

[6] Z. T. Kalbarczyk, R. K. Iyer, S. Bagchi,
and K. Whisnant. Chameleon: A soft-
ware infrastructure for adaptive fault tol-
erance. IEEE Transactions on Parallel and
Distributed Systems, 10(6):560–579, 1999.

[7] M. E. Locasto, S. Sidiroglou, and A. D.
Keromytis. Software self-healing using col-
laborative application communities. In Pro-
ceedings of the Symposium on Network and
Distributed Systems Security, 2006.

[8] M. Monperrus. A critical review of
"automatic patch generation learned from
human-written patches": Essay on the
problem statement and the evaluation of
automatic software repair. In Proceedings
of the International Conference on Software
Engineering, 2014.

5

[9] M. Monperrus. Principles of antifragile soft-
ware. Technical Report 1404.3056, Arxiv,
2014.

[10] H. Petroski. To Engineer is Human: The
Role of Failure in Successful Design. Vin-
tage Books, 1992.

[11] B. Randell. System structure for software
fault tolerance. IEEE Transactions on Soft-
ware Engineering, SE-1(2):220 –232, june
1975.

[12] E. S. Raymond et al. The jargon file.
http://catb.org/jargon/, last accessed
Jan. 2014, -.

[13] M. Shaw. Self-healing: softening precision
to avoid brittleness. In Proceedings of the
first workshop on self-healing systems, 2002.

[14] N. N. Taled. Antifragile. Random House,
2012.

[15] A. Tseitlin. The antifragile organization.
Commun. ACM, 56(8):40–44, Aug. 2013.

[16] J. von Neumann. Probabilistic logics and
the synthesis of reliable organisms from un-
reliable components. Automata Studies,
1956.

[17] G. M. Weinberg. The psychology of com-
puter programming. Van Nostrand Reinhold
New York, 1971.

[18] S. Yau and R. Cheung. Design of self-
checking software. In ACM SIGPLAN No-
tices, volume 10, pages 450–455. ACM,
1975.

6

