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Abstract. Classically, computers have been used as knowledge discovery tools insofar as the
result of executing a program provides useful insight. For instance, the solution of a differential

equation may help us understand the natural world, the value of a parameter of a statistical

model may help us understand the probabilistic structure of a domain, the variable assignment
maximising an objective function may help to further business goals. A secondary class of knowl-

edge discovery stems from the act of using a programming language. By modeling a domain

computationally, the developer can discover new and interesting properties of that domain, and
better convey those insights to others. The purpose of this work is twofold: First, we want to

show that programming languages can help their users achieve knowledge discovery moments
and, secondly, that this property is the least exploited feature of programming languages in the

general science community. We want to outline a research program with the objective of making

scientific programming more efficient in its ultimate goal of knowledge discovery.

“[. . . ] for Vannevar Bush and for many others, analog machines had a wonderfully
evocative quality. They didn’t just calculate an answer; they invited you to go in
and make a tangible model of the world with your own hands, and then they acted
out the unfolding reality right before your eyes.” [Waldrop, 2002]

1. Introduction

To computer scientists, the act of transforming an idea into working code is an act of under-
standing. We assume that this is not because of a particular characteristic of the scientists in
comparison to those from other disciplines, but because of the strong relation between our object of
study (our domain) and the tools we use, i.e., programming languages. For instance, looking into
the code of an algorithm, a scientist may have a good intuition about the time complexity, memory
complexity, and even about the correctness of the algorithm. A relevant characteristic is that we
get this understanding in addition to the execution of the program. It is the programming language
itself that makes explicit some characteristic of the original problem and allows us to reason about
it in a different way.

E-mail address: jburroni@cs.umass.edu.

1Petricek follows Foucault’s concept of episteme. “An episteme defines the assumptions that make human knowledge

possible in a particular epoch. It provides the apparatus for separating what may from what may not be considered
as scientific.” [Petricek, 2016]
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2 THE ACT OF COMPUTER PROGRAMMING IN SCIENCE

Petricek [2016] discusses the “episteme1, paradigms and research programmes” of programming
language (PL) investigation, opening the door for new ways of research in the programming lan-
guage discipline. The analysis of signs and resemblances in PL appears among the proposed topics
in that work, as one that was hidden in the current episteme. “If resemblances and metaphors
played fundamental role in our scientific thinking, we would not just gain interesting insights from
them, but we would also ask different questions” [Petricek, 2016]. The present work is developed
under the research program proposed by Petricek, but instead of looking at the episteme on which
programming language research is inscribed, we focus on the epistemic2 component of the actual
programming languages: how programming languages aid knowledge discovery. In scientific pro-
gramming, where knowledge has central relevance, we hypothesise that the capacity of programming
as a device for knowledge discovery is under-used. One important feature of programming languages
that facilities knowledge discovery is their formal nature, but we leave this property aside to focus
on the less explored properties. Our interest lies in knowledge discovery as a result of the act of
programming. To this end, we investigate the use of programming languages in science (section 2)
examining three different patterns of usage (subsection 2.1, subsection 2.2 and subsection 2.3).
Each usage pattern will be depicted with small case studies, and a discussion about names will
follow (section 3). Finally, the need for a theoretical framework to improve the use of programming
languages in science will be discussed in section 4.

We had two objectives when selecting case studies. Some cases were chosen because of their
relevance to our hypothesis, but others for their relevance to a particular field. In all cases we hope
that they aid in understanding our exposition.

2. Programming Languages in Science

One scientist is working with data and performs a linear regression. Her results show that the null
hypothesis can be rejected, thus implying the statistical relation between two variables. Another
scientist is modeling a social-network effect, and she finds that the model resembles a preferential
attachment process. These are two different examples of what we call a knowledge discovery moment,
a situation that appears several times during the course of a research based on programming. The
first example represents the most common situation that usually happens at the conclusion of
an experiment, when observing the results. Alternatively, the second example represents a more
subtle knowledge discovery moment, a moment that may appear through reflection while creating a
computational model. Notwithstanding their differences, both examples are situations where new
insights are mediated by the use of programming languages. Usually, programming languages are
used for calculation —the first example—, but as they are languages, they have features to facilitate
reflection and deep thought —the second example. In particular, we have the following underlying
working hypothesis: an important activity of science, and knowledge discovery in general, is the
creation of concepts, and concepts can be thought as elements of a lower (abstract) level under
the cover of a name. It happens that this activity is also important in programming through
programming languages. The relation between both instances of this activity is not fully exploited
nor understood. In this section we will explore the different uses of PL in science and how they
relate to the exploitation of the different knowledge discovery moments. We identify at least three
very different approaches to PL for use in science: a calculation-based approach, an approach based
on domain specific languages (DSLs), and a simulation based approach. This distinction is fuzzy,
but it will help us to expose different aspects of programming.

2In this work, we follow Turkle and Papert [1990] with regard the use of the word epistemology. Instead of having a

single form of knowledge, the propositional, we build on top of the idea of “different approaches to knowledge”.
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2.1. Programming Languages as Calculation Devices.

“In effect, [J. C. R. Licklider] explained to them, everyone at the Pentagon was still
thinking of computers as giant calculators and data processors.” [Waldrop, 2002]

Computers have been used as scientific calculation devices since their creation. Fortran estab-
lished a way to use the computer that consisted of writing a model, compiling a file and finally
executing it. The main knowledge discovery moment stemming from PL designed to do computa-
tion is the moment when the result is available, after the execution. In this case, the knowledge is
crystallised in the result. A particular use of these PL that moves away from this paradigm is the
exploratory analysis possible when the PL provides a read-eval-print-loop: a REPL. Contempo-
rary examples of this include Mathematica, Jupyter Notebook, RStudio and Matlab. These tools
are useful for both large and small problems. Researchers can readily probe small aspects of the
system and adapt an experimental plan based on the result of the probes. This is not exploiting
a particular feature of a PL (aside from the REPL)—instead it is exploiting the interactive com-
puting paradigm, as devised in the 1950s. The role of interactive computing in the programming
language community has changed over time. Smalltalk provides an approach to interactivity that
is completely different to the REPL, as can be seen for instance in Goldberg [1984], but this idea is
not used in mainstream scientific research. Also, Mathematica introduced a way to program in an
environment that resembles an interactive document, and this idea was followed by Python with
its Jupyter Notebook and RStudio. The level of interactivity added to these environments—for in-
stance, with Bokeh [Bokeh Development Team, 2014]—and the enormous progress on performance
for numerical computing put these tools among the favourite options for scientific programming
[Shen, 2014]. It is worth mentioning that this idea can be traced back to the WEB environment
developed by Knuth [1984], where LATEX and Pascal code were integrated in a single document.
An important difference between the WEB environment and Jupyter is that the former was an
exposition of code, a tool to facilitate understanding of the code.

2.1.1. Case Study: QuantEcon. “QuantEcon is a NumFOCUS fiscally sponsored project dedicated
to development and documentation of modern open source computational tools for economics,
econometrics, and decision making.”3

This project made an important step forward in the use of programming for economics. It gath-
ered disparate research in economics, then organized and presented this research to the community.
In addition to its quality, the participation of relevant figures as a Nobel laureate attracted the
attention of many researchers of the field. Among other things, it created a collection of Jupyter
notebooks with a large part of current economic and econometric ideas. A typical notebook from
QuantEcon has the content of a lecture where a specific topic is analysed (see Figure 1). These
notebooks usually include very detailed descriptions of a model, consistent with a published article,
as in Figure 1a, followed by (or interleaved with) an implementation of the model, as show in Fig-
ure 1b. We have reproduced a small functional unit in Figure 2 and a code snippet of this function
is shown in Figure 1c. This code demonstrates a problem that we wish to expose with this work:
the task of instructing the computer what to do accounts for the majority of the identifiers. These
are strictly mechanical operations. In this case, the program is a calculation device, translated from
mathematics, and the additions are nuisances required for it to work: identifiers like self , reshape
or slice objects. Our hypothesis is that a theoretical reader will understand this program, in the

3http://quantecon.org

http://quantecon.org
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sense that the knowledge crystallised by the programmer will be recovered4. However, it is unlikely
that new concepts will emerge from this exposition, leading to a knowledge discovery moment. We
believe that new concepts will not emerge because it is hard to relate this code to other concepts
creating metaphors and abstractions. We could create suggestions to improve the implementation
and even to improve the language. However, we think that it is better to first acknowledge the
existence of a particular problem, then understand its causes and finally propose solutions to it.

(a) Screenshot of Aiyagari continuous time’s
model description.

(b) Extract of the Household class.

(c) Code snippet of method solve bellman.

Figure 1. Screenshots of a QuantEcon notebook5. This notebook is based on
the model of Achdou et al. [2014].

2.2. Domain Specific Languages. Domain specific languages (DSL), as the name states, contain
elements proper of their domain while reducing nuisance added by constructs that are only used for
general purpose computation. Our main focus are those DSL for which the domain is close to the
scientist’s domain. In the previous sections we analysed PL that were meant for computations, and

4We use the crystallised information created by Hidalgo [2015]: the code is a crystallised version of the writer’s
knowledge.
5http://nbviewer.jupyter.org/github/QuantEcon/QuantEcon.notebooks/blob/master/aiyagari_continuous_

time.ipynb

http://nbviewer.jupyter.org/github/QuantEcon/QuantEcon.notebooks/blob/master/aiyagari_continuous_time.ipynb
http://nbviewer.jupyter.org/github/QuantEcon/QuantEcon.notebooks/blob/master/aiyagari_continuous_time.ipynb
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some of them are proper DSLs for mathematical calculations. For our purposes, those languages
are not considered DSLs because they are more relevant as calculation tools.

The use of domain specific languages yields different knowledge discovery moments. When a DSL
is used, we have a knowledge discovery moment which can be related to Kuhn’s view of normal
science: the concepts are already defined in the language and the researcher build on top of these
concepts. Note that this language may encode an existing paradigm or exhibit an entirely new way
of thinking. However, there is a knowledge discovery moment prior to this, and this happens in
the act of designing a DSL. The challenge is to model the domain’s concept—the basic axioms—in
term of the metalanguage, and while doing this task a knowledge discovery moments may emerge.
Therefore, the design of DSLs is an interesting moment, and some process like semantic-driven
design increase their usefulness for the creation of knowledge:

“The semantic-driven design process consists of two major parts. The first part is
concerned with the modeling of the semantic domain, which is based on
the identification of basic semantic objects and their relationships. The
second part consists of the design of the language’s syntax, which is about finding
good ways of constructing and combining elements of the semantic domain.” [Erwig
and Walkingshaw, 2014]

It is clear that finding the basic semantic objects and their relationships are fundamental tasks of
science and while doing this, a knowledge discovery moment emerges. As a downside, this moment
is only offered to the designer of the DSL, not to the users. If the designers are not specialists in
the domain of the language (e.g., a computer scientist working on a DSL for biochemistry), the
possibility of discovery may not be great. A corollary of this fact is that creation of DSLs should be
encouraged to the sciences, in collaboration with computer scientists, as a way to make discoveries.

2.2.1. Case Study: MathMorph. The first case study is MathMorph [MathMorph development
team, 2000], a DSL for working with mathematical objects, developed in the late nineties using
Squeak, a Smalltalk dialect. This is an example of the idea from Priestley [2011] that “[for the
Smalltalk community, programming was thought of] as a process of working interactively with the
semantic representation of the program, using text simply as one possible interface”6.The conclu-
sion of Notarfrancesco and Caniglia [2000], where the project is described, shows why it is relevant
to our research:

“While object orientation is normally an abstraction task, where real things have
to be represented in a virtual space, the same practice has the inverse result when
mathematical notions are modeled. The model of a mathematical concept is more
tangible than the concept itself. Instead of abstracting, one experiences the rather
unusual feeling of concreting.7

Along these few years we have also noticed many interesting facts regarding
pedagogy. A few of them are:

• The students learn Squeak as a natural consequence of thinking about math-
ematical ideas.

• Well known mathematical notions suddenly show unsuspected properties.
• Some theorems are naturally generalised in uncommon ways. As a result,

deeper than normal understanding is achieved.

6Cited in [Petricek, 2016]
7Turkle and Papert [1990] also noted this property. To them, “the computer has a theoretical vocation: it can make

the abstract concrete; it can bring formality down-to-earth.”
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• Living examples that naively begin as simple forms of code testing, quickly
become rich sources of new questions and problems.

• The classical barriers between formal definitions and intuitive ideas are changed
into useful and precise specifications on how to move from the paper or black-
board to the Squeak world in a straightforward way.

• Algorithmic thinking and geometry, usually absent in the conventional ap-
proach, get included in the whole subject of study.” [Notarfrancesco and Caniglia,
2000]

For the development team, the act of programming is also an act of knowledge discovery. Even
though the project was discontinued, there are still efforts to learn about abstract mathematics
using Smalltalk programming. For instance, the work on homological algebra presented in Caniglia
[2015], where Smalltalk was used to understand a mistake in an homological algebra proof. Unlike
automated theorem proving, this is an example of knowledge discovery through code.

2.2.2. Case Study: Probabilistic Programming. Probabilistic programming languages (PPL) are
designed for probabilistic modelling through the addition of two constructs: one that allows the
sampling of random variables, and other that allows for conditioning on data [Gordon et al., 2014].
The development of these languages is currently very active. A large amount of knowledge is
created as a consequence of the language and not of computation. An interesting feature of some
PPLs is that Bayesian networks can easily be represented as probabilistic programs [Gordon et al.,
2014, section 3.1]. In that way, reasoning about programs is equivalent to reasoning about joint
distributions. From this relation, opportunities for knowledge discovery are possible by considering
inference techniques driven by the structure of those programs.

In the following we present two examples of inference techniques that were discovered because
of the representation as code. First, Sankaranarayanan et al. [2013] explored the idea of analysing
execution paths (symbolic execution) of probabilistic programs by finding the probability of satis-
faction for a system of constraints. Second, Ritchie et al. [2015] used the continuation-passing style
representation to get a faster Metropolis-Hasting proposal. Again, the code representation of the
program is fundamental for the insight. On this line of thought, the “Design and Implementation
of Probabilistic Programming Languages” [Goodman and Stuhlmüller, 2014] was created as an in-
teractive book on probabilistic programming languages, centered around code. In these cases, the
knowledge discovery moments are offered to the designers of the DSL, as suggested above. This
happens because they are forced to think about the domain in the metalanguage.

Separately, PPL descendants of WinBUGS [Lunn et al., 2000] such as JAGS [Plummer and
others, 2003] and STAN [Gelman et al., 2015] can be seen as DSL for statistical modelling in the
sense that models resemble classical whiteboard statistics. A hierarchical Bayesian model can be
understood as such looking at the code. In this way, the tool used to reason about the model, and
the one used to create inference are unified.

Bayesian networks themselves deserves further examination. BN are directed acyclic graphs
where each node represents a random variable and is associated with a conditional probability
distribution. They are interesting for our investigation because they emerged as a device useful
for both representing joint probability distributions and computing probabilistic queries on that
representation. In its origin, they were a tool to encode probabilities in a computer, but Bayesian
networks turn out to be more than simple data structures, and led to opportunities for knowledge
discovery.
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“[Bayesian networks should be seen] not merely as a passive parsimonious code for
storing factual knowledge but also as a computational architecture for reasoning
about that knowledge” [Pearl, 1985]

The impacts of this new abstraction could be thought of as the impact of the Nucleic acid double
helix idea. This is not a perfect example of our hypothesis as this did not emerge from observation
of code. However, it has a similar characteristic: it is a computational abstraction with impact on
the original domain.

2.3. PL as a Modelling Tool: Simulations. Leaving out the use of statistical inference —
a calculation based approach—, one the most widespread ways in which programming languages
are used in the social sciences is through simulations. Simulations rely on program execution for
the knowledge discovery moment, but unlike the calculation device, the domain is modelled in the
program. Additionally, they allow for the presence of emergent phenomena. Scientists model the
micro-behaviors and observe the macro-behavior. This is particularly true in the so-called agent-
based models (ABM) [Macy and Willer, 2002]. In these frameworks, the scientist must model two
basic things: the agents and their relations. Additionally, a global constraint may be modeled in
the form of an environment. The expected knowledge discovery moments of these models is the
emergent behavior and the consequences of perturbations to the model, i.e., interventions. Here
too, the modeling itself is also an opportunity for learning. The assumptions about the agents and
relations put, either explicitly or implicitly, in the model become relevant as the result depends on
them. A good programming language should be able to expose these assumptions as fundamental
variables.

In simulation frameworks, as with any DSL, the level of generality in the language imposes
constraints on program design. In some simulations, the domain is already crystallised in the
environment, and the knowledge discovery moments are restricted to its theoretical framework.
This is another instance of Kuhn’s normal science (see above). Other frameworks allow for more
general modeling, at the cost of making the modelling task harder. A similar effect appears at
model’s level:

“There are some issues related to the application of ABM [agent-based models] to
the social, political, and economic sciences. One issue is common to all modeling
techniques: a model has to serve a purpose; a general-purpose model cannot work.
The model has to be built at the right level of description, with just the right amount
of detail to serve its purpose; this remains an art more than a science”. [Bonabeau,
2002]

It is interesting that the ABM community developed a standard to describe the simulations:
The Overview, Design concepts and Details (ODD) standard protocol [Grimm et al., 2006]. The
elements of ODD can be seen in Table 1. This protocol established the creation of a document that
describes the models and should allow for a complete re-implementation of the models using only
this document —which is a text document, separated from the code. We would like to highlight that
some aspects of the ODD protocol (necessarily) refer to elements of a program. Thus, it is possible
that this protocol was created to solve a failure of programming languages as a communication
device. In fact, the authors of the standard noted their intentions clearly:

“There are two main and interrelated problems with descriptions of IBMs [individ-
ual based-models]: (1) there is no standard protocol for describing them and (2)
IBMs are often described verbally without a clear indication of the equations, rules,
and schedules that are used in the model.” [Grimm et al., 2006]
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Overview
Purpose

State variables and scales
Process overview and scheduling

Design concepts Design concepts

Details
Initialization

Input
Submodels

Table 1. Description of elements from the ODD standard. Table taken from
Grimm et al. [2006]

2.3.1. Case Study: NetLogo. One of the programming languages most used in the social sciences
is NetLogo [Railsback and Grimm, 2011]. It is important to know which features of this language
attracted many scientists from disparate disciplines such as economy, ecology, sociology and political
sciences. NetLogo is a multi-agent version of Logo. Logo was designed by Feurzeig and Papert in
1967 as a tool to make programming accessible to children. The principal object of it is the turtle: it
was “an on-screen ‘cursor’ that showed output from commands for movement and small retractable
pen, together producing line graphics”8. For many computer scientists, the popularity of NetLogo
in the social sciences may be odd (as it was designed for children), which is an indication that further
research may be necessary to understand the advantages of this language for social science. There
are two elements that may explain this phenomenon. First, it is a multi-agent system, thus making
it suitable for agent-based modelling. Also, Logo featured the idea of ‘body syntonic’ reasoning:

“The Logo turtle was designed to be ‘body syntonic’, to allow users to put them-
selves in its place. When children learn to program in Logo, they are encourage to
work out their programs by ‘playing turtle’. The classic example of this is devel-
oping the Logo program for drawing a circle. This is difficult if you search for it
by analytic means (you will need to find a differential equation), but easy if you
put yourself in the turtle’s place and pace it out. (The turtle makes a circle by
going forward a little and turning a little, going forward a little and turning a little,
etc.).” [Turkle and Papert, 1990] (see also Papert [1980])

Then, it is possible that the popularity of NetLogo9 is a validation of Papert’s ideas. Consequently,
for simple models NetLogo code reads as a model of the domain: the percentage of identifiers related
to the domain are high relative to the system identifiers. An example of NetLogo code is shown in
Listing 1: a code snippet for a predator-prey model10.

Listing 1. Predator-Prey Model
; ; Predator−Prey model from http ://modelingcommons . org
to go

; ; l i s t e n to the hubnet c l i e n t
every 0 .1
[

l i s t e n −c l i e n t s
display

]

; ; i f wander? i s t rue then the andro ids wander around the landscape

8https://en.wikipedia.org/wiki/Logo_(programming_language)
9Interestingly, the name Logo was “derived from the Greek word for ‘word’ or ‘thought’ [λόγος].” Goldenberg [1982]

This relation between ‘words’, ‘thought’ and programming languages is the basic element of our research.
10http://modelingcommons.org/browse/one_model/2401#model_tabs_browse_info

https://en.wikipedia.org/wiki/Logo_(programming_language)
http://modelingcommons.org/browse/one_model/2401#model_tabs_browse_info
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i f wander?
[ androids−wander ]

; ; the de lay below keep p lant s from growing too f a s t
; ; and predator /prey from l o s i n g po int s too f a s t
every 3
[

i f any? t u r t l e s
[

p lants−regrow
ask students
[

s e t energy energy − 0 .5
i f energy <= 0
[ student−d ie ]
update−energy−monitor

]
do−p lo t

]
t i c k

]
end

3. The final act: Naming

The literature on naming and programming languages is ample and the advantages of a good
naming practice are very well known. There is a current effort on software engineering trying to
identify linguistic patterns in source code that are recognisable as bad practices [Arnaoudova et al.,
2016] and the relation of names with the code’s overall quality [Butler et al., 2009]. Our perspective
is not identical to that of the software engineering community, but shares some elements with
it. In particular, we consider naming a very important part of programming, but specifically we
conjecture that naming allows for a very relevant knowledge discovery moment. The act of naming
is equivalent to the act of making an abstraction, and abstractions are important outputs of science.

In the early years of software development, users of Fortran employed single-character variable
names. This was partly due to technical limitations, but sometimes this was thought of as an
imitation of mathematics. While it is true that some mathematical variables are named with a
single character, those variables are also typically referred to more expressively in natural language
in terms of their properties. Also, naming mathematical objects is an activity continuously per-
formed, as the names become a means for abstracting useful and common mathematical objects.
Lastly, mathematicians usually discuss objects in the context of a larger piece of writing, where
single-character abbreviations are defined before they are referenced. The reader should be able to
recognise all the involved elements in the operations for it to be valid. When writing code, there is
a well-known difference in relevance between the code and the accompanying text (documentation).
The eye of the reader will go first to the code and later, in case of doubt, her eye will move to the
documentation. This difference in relevance becomes more important when knowledge discovery is
part of the objectives of coding.

The most well-known programming language which features a notation inspired by the notation of
mathematics is APL—A Programming Language [Iverson, 2007]. The stated properties of notation
that guided APL design were: “ease of expressing constructs arising in problems, suggestivity,
ability to subordinate detail, economy, and its amenability to formal proof”. We can argue about
whether or not APL fulfilled its goals, but what is relevant to us is that the language was meant to
be a tool of thought: a knowledge discovery tool.

Another exploration of the relation between mathematical language, programming languages and
natural languages is the classical work of Naur [1975]. In that work, Naur notes the “awkwardness at
the use of the word language in the context ‘programming language”’. He argues that the two main
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differences between both are: 1) the form (written vs spoken), and 2) the way of understanding the
words (fuzzy vs “perfectly well-defined”). Interestingly, he acknowledge that some uses of natural
language aren’t fuzzy, in particular the use in science, and this is the use of interest for the present
work. Even thought the use in computing is well-defined, we note that there exists a level of freedom
in programming languages: the freedom of naming.

Since the creation of LISP [McCarthy, 1960], there were no strong technical limitations on iden-
tifier naming, and naming became an important part of programming. The Smalltalk community
has a long tradition of giving a central relevance to names. Beck devoted a significant amount of
his work [Beck, 1997] to the use of names as a communication device. For example, the “Intention
Revealing Messages” are thought of as “the most extreme case of writing for readers instead of
the computers”. Interestingly, this tradition is also related to knowledge discovery moments. In
Wilkinson [2014], the author explicitly states that “putting a name is the most difficult part [of
programming] as it is creating knowledge”. This idea of writing for readers was also investigated by
Knuth. Working in a way to relate the code and its accompanying text, he developed the concept
of literate programming [Knuth, 1984]. In that work, he stated that:

“Instead of imaging that our main task is to instruct a computer what to do, let
us concentrate rather on explaining to human beings what we want a computer to
do.”

We could rephrase scientific programming as “explaining to human beings, in a way that new things
can be learned, what we want a computer to do.”

In the aforementioned work, Knuth made also a reflection about the level of verbosity of WEB’s
sections, that can be translated to others code units:

“The name of a section (enclosed in angle brackets) should be long enough to
encapsulate the essential characteristics of the code in that section, but it should
not be too verbose. I found very early that it would be a mistake to include all of
the assumptions about local and global variables in the name of each section, even
though such information would strictly be necessary to isolate that section as an
independent module. The trick is to find a balance between formal and informal
exposition so that a reader can grasp what is happening without being overwhelmed
with details.” [Knuth, 1984]

4. Past and Future Work

There are at least two dimensions of work in this area: a quantification and a philosophical
dimension.

4.1. Quantification. Some of the ideas presented on this work could be quantified. It would be
very informative to know the distribution of sizes of variable names, the size of functional units and
the amount of code duplication both in scientific code and in non-scientific code. These variables
will show how different scientific code is from non-scientific code, but the cause of the difference
will still be unknown. Ideally, we would like to have a causal study relating programming features
with scientific knowledge discoveries.

4.2. Philosophical dimension. Additionally, it is good to have a clear understanding of what
to measure. To this end, it is necessary to build a theory; the epistemic component of the act of
programming should be studied. The work of philosophers could be of help. In the nineteenth
century, Frege et al. [1951] described the relation between objects, concepts and references. More
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ideas were developed in the twentieth century, beginning with the work of De Saussure [1916],
and Peirce [1931], but including Foucault [1966] and Barthes [1977]. There is a complete field of
science devoted to the research of the use of words, but what is relevant to us is how the words in
code help to understand and to create new knowledge discovery moments. This enterprise already
started with Noble et al. [2006], where design patterns were analysed from a semiotic perspective
(the study of sign processing and meaning-making).

In the work of Tanaka-Ishii [2010], programming itself was analysed semiotically. This field
created (at least) two models of signs: a two-element model proposed by de Saussure and composed
of the signifier and signified (the dyadic model), and a three-element model proposed by Peirce and
composed of the object, label representamen, and interpretant (the triadic model). In the dyadic
model, the two sides of a sign corresponds to the signifier (a label) and the signified (the concept).
For instance, if we analyse the term ‘tree’, the term itself is the signifier which invokes the concept
of a tree, the signified. By contrast, the triadic model adds a third element. It is “the representamen
(label) that evokes the interpretant (idea or sense) defining the object (referent). In the example of
the tree, the label ‘tree’ (representamen) evokes the idea of the tree (interpretant), which designates
the referent tree (object)”11. It’s worth mention that different sign models expose different aspects
of the sign.

Tanaka-Ishii studied, among other things, the relation between semiotic models and programming
paradigms: the relation between the dyadic model and the functional paradigm, and the triadic
model and the object oriented paradigm:

“In functional programs all identifiers are dyadic, whereas in object-oriented pro-
grams dyadic and triadic identifiers are both seen. [. . . ] In the dyadic model,
different uses attribute additional meanings to dyadic identifiers. In contrast, in
the object-oriented paradigm such meanings should be incorporated within the
identifier definition from the beginning. Everything that adds meaning to an iden-
tifier must form part of its definition; therefore if two sets of data are to be use
differently, they must appear as two different structures.[. . . ] That is, a triadic
identifier has its meaning described within its class. If two triadic identifiers’ mean-
ings differ in some aspect, then the difference must be visible within the identifiers’
classes.” [Tanaka-Ishii, 2010]

This work forms a framework on which we can build a complete theory that relates the identifiers
on code with the creation of knowledge, but still there are many dots that need to be connected.

5. Conclusions

In linguistic theory, the Sapir-Whorf hypothesis states that language determines thought, or
at least that its usage and categories influence thought.12 It is clear that the language used for
modelling a scientific object will have an influence regarding the discoveries on this object. As
Diaconis put it when discussing reproducing kernel Hilbert spaces:

“Like all transform theories (think Fourier), problems in one space may become
transparent in the other, and optimal solutions in one space are often usefully
optimal in the other.” [Berlinet and Thomas-Agnan, 2011, Preface]

To this end, it is beneficial to do more than translate from one language to another. The problem
must be thought of in the second language. In our case, the problems must be thought of in the

11Examples taken from [Tanaka-Ishii, 2010].
12https://en.wikipedia.org/wiki/Linguistic_relativity

https://en.wikipedia.org/wiki/Linguistic_relativity
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context of programming languages. Information flows between a program, its writer and its reader,
but once the program is written, the information is crystallised in its code. When the information
that goes from the code to the reader and that is more than the information crystallised on it,
we have a knowledge discovery moment. In this work we made the first exposition of a problem
regarding the use of PL in science, and its relation to the moment of the knowledge discovery. Future
works are required to quantify this hypothesis, and most importantly, to determine the ultimate
cause of this phenomenon: Is it because of a lack of natural expressiveness of the programming
languages, a lack in the capacity to express thoughts in a way that are easily communicable to
humans, or is it because a failure in the communication of the power of PL to users outside the
computer science community?

The main contribution of this work is to make explicit the need for a theoretical framework that
helps to make programming language better tools for understanding in scientific programming—a
need that has been present since the dawn of computer science. When Dijkstra [1972] encouraged
all the programmers to “forget that FORTRAN ever existed [. . . ] for as vehicle of thought it is
no longer adequate”, he also proposed “the analysis of the influence that programming languages
have on the thinking habits of their users”. This is still a valid research program and becomes more
relevant in the domain of scientific programming. We should embrace that research program.
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Appendix A. Complete solve bellman from QuantEcon

Figure 2. Complete implementation of the method solve bellman based on
Achdou et al. [2014].

https://www.youtube.com/watch?time_continue=15&v=brdx8YAVZag
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